A marker-based mean finite helical axis model to determine elbow rotation axes and kinematics in vivo.
نویسندگان
چکیده
The predominance of upper-limb elbow models have been based on earlier lower-limb motion analysis models. We developed and validated a functionally based 2 degree-of-freedom upper-limb model to measure rotations of the forearm using a marker-based approach. Data were collected from humans and a mechanical arm with known axes and ranges of angular motion in 3 planes. This upper-limb model was compared with an anatomically based model following the proposed ISB standardization. Location of the axes of rotation relative to each other was determined in vivo. Data indicated that the functional model was not influenced by cross-talk from adduction-abduction, accurately measuring flexion-extension and pronation-supination. The functional flexion-extension axis in vivo is angled at 6.6 degrees to the anatomical line defined from the humeral medial to lateral epicondyles. The pronation-supination axis intersected the anatomically defined flexion-extension axis at 88.1 degrees. Influence of cross-talk on flexion-extension kinematics in the anatomical model was indicated by strong correlation between flexion-extension and adduction-abduction angles for tasks performed by the subjects. The proposed functional model eliminated cross-talk by sharing a common flexion axis between the humerus and forearm. In doing so, errors due to misalignment of axes are minimized providing greater accuracy in kinematic data.
منابع مشابه
Assessment of elbow joint kinematics in passive motion by electromagnetic motion tracking.
This research provides a detailed analysis of the kinematics of passive elbow motion. It quantifies how closely humeroulnar kinematics approximates rotation around a fixed axis. The results are clinically relevant for emerging treatment modalities that impose an artificial hinge to the elbow joint, such as total elbow arthroplasty and articulated external fixation. In a cadaveric study of seven...
متن کاملEstimation of spinal loads using a detailed finite element model of the L4-L5 lumbar segment derived by medical imaging kinematics; a feasibility study
Introduction: Low back pain is the most prevalent orthopedic disorder and the first main cause of poor working functionality in developed as wells as many developing countries. In Absence of noninvasive in vivo measurement approaches, biomechanical models are used to estimate mechanical loads on human joints during physical activities. To estimate joint loads via musculoskelet...
متن کاملComparing Cardan Rotation Angle and Finite Helical Axis Representations of Talocrural and Subtalar in Vivo Kinematics
INTRODUCTION The joints of the rear-foot are subjected to the highest stresses and are the most commonly injured, as compared the other joints in the human body. Yet, little is known about the in vivo kinematics of the talocrural and subtalar joints. The data available for these joints have typically been presented in terms of the finite helical axis (FHA) and are most often acquired through st...
متن کاملEffect of Relative Marker Movement on the Calculation of the Foot Torsion Axis Using a Combined Cardan Angle and Helical Axis Approach
The two main movements occurring between the forefoot and rearfoot segment of a human foot are flexion at the metatarsophalangeal joints and torsion in the midfoot. The location of the torsion axis within the foot is currently unknown. The purpose of this study was to develop a method based on Cardan angles and the finite helical axis approach to calculate the torsion axis without the effect of...
متن کاملFinite helical axis for the analysis of joint kinematics: comparison of an electromagnetic and an optical motion capture system
Background The analysis of joints kinematics is important in clinical practice and in research. Nowadays it is possible to evaluate the mobility of joints in vivo with different motion capture techniques available in the market. Optical systems use infrared cameras and reflective markers to evaluate body movements, while other systems use electromagnetic fields to detect position and orientatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied biomechanics
دوره 26 3 شماره
صفحات -
تاریخ انتشار 2010